

Date Planned : / /	Daily Tutorial Sheet-13	Expected Duration : 30 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

147. Borax on heating with cobalt oxide forms a blue bead of :

 \odot

- (A) $Co(BO_2)_2$
- B) CoBO₂
- (C) $Co_3(BO_3)_2$
- (**D**) $\operatorname{Na_3Co(BO_3)_2}$

148. The dissolution of $Al(OH)_3$ by a solution of NaOH results in the formation of :

(A) $[Al(H_2O)_4(OH)]^{2+}$

(B) $[Al(H_2O)_2(OH)_4]^-$

(C) $[A1(H_2O)_3(OH)_3]$

(D) $[Al(H_2O)_6(OH)_3]$

149. Select the incorrect statement about the boron :

- (A) Pure form of the elements are obtained by the reduction of BCl_3 with zinc at 900°C.
- **(B)** Crystalline boron is attacked only by hot concentrated oxidising agents.
- (C) Amorphous boron and ammonia at white heat gives $(BN)_x$, a slippery white solid with a layer structure resembling that of graphite.
- **(D)** Boron does form B^{3+} cation easily.

150. A compound of boron X reacts at 200°C with NH_3 to give another compound Y which is called as inorganic benzene. The compound Y is a colourless liquid and is highly light sensitive. Its melting point is -57°C. The compound X with excess of NH_3 and at a still higher temperature gives boron nitride $(BN)_n$. The compounds X and Y are respectively:

(A) BH_3 and B_2H_6

(B) NaBH₄ and C_6H_6

(C) B_2H_6 and $B_3N_3H_6$

(D) B_4C_3 and C_6H_6

151. For given processes, choose the correct order of purity of silicon obtained :

- I. $SiO_2 + 2C \longrightarrow Si + 2CO$
- II. Si(impure) + $2Cl_2 \longrightarrow SiCl_4$

$$SiCl_4 + 2Mg \longrightarrow Si + MgCl_2$$

- III. $Na_2[SiF_6] + 4Na \longrightarrow 6NaF + Si \longrightarrow Zone refined Si$
- (A) I > II > III
- **(B)** III > II > I
- (C) I = II = III
- **(D)** II > I > III

152. E represents an element belonging to boron family.

$$2E + 3X_2 \longrightarrow 2EX_3$$

$$(X = F, Cl, Br, I)$$

- (A) Oxidation state of E in all EX_3 is +3
- **(B)** All EX_3 are predominantly ionic
- (C) TI does not form TIX_3 as TI^+ is more stable than Ti^{3+}
- **(D)** There exists some EX_3 for which E shows +1 oxidation state